
A simple drop and compute model for a SaaS cloud infrastructure for advanced

research computing

The experiences of building OBOE, the Oxford Batch Operation Engine

Neil Caithness and Milo Thurston

Oxford e-Research Centre

University of Oxford

Oxford, United Kingdom

neil.caithness@oerc.ox.ac.uk; milo.thurston@oerc.ox.ac.uk

Abstract—We describe our experiences in building a web-based

platform for cloud service integration for advanced community

research computing within the context of a large funded project.

Keywords-SaaS; AGILE; Drop & Compute; FP7

I. INTRODUCTION

The trend in advanced research computing is moving
towards the delivery of community applications through a
uniform interface and consistent user experience. The Oxford
Batch Operation Engine [1] (OBOE) is a science gateway to
research computing, with new methods available to
developers to integrate new applications as software services,
removing the need for them to build bespoke user interfaces
or manage software delivery. For the user, OBOE provides
easy and uniform access to well-known community research
applications and new developments alike without the need for
software installation or technical knowledge of running
software in the cloud.

The principal aim of OBOE is effectively to decouple both
the user and the application developer from the complicated
software systems that make cloud and distributed computing
possible, and yet to reconnect them again directly in their
mutual research landscapes.

OBOE, or more specifically the web-based platform for
cloud service integration, was built on a limited budget with
the requirement that it be a lasting system operational and
sustainable into the future. We believe that our experiences in
building OBOE will prove useful to the broader cloud
infrastructure community.

OBOE is the product of WP5 [2] of the ViBRANT [3]
project funded by the EU/FP7; ~13 person months per year for
three years running from December 2010 to November 2013,
with no additional systems or compute funding. The
ViBRANT project as whole is a large coordinated activity
spread across 17 partner organizations in 12 countries.

The Objective for WP5 was simple: To provide seamless
integration of relevant external computing services for
biodiversity researchers and Scratchpad [4, 5] users.

The final Deliverable, against which success will be
measured, is equally simple: Refined and sustainable software
services available for public use with mechanisms to measure
usage rates.

Between these two statements lie the details of paths
chosen or rejected, judgment calls and pragmatic decisions, of
instant-wins versus long-term usefulness and sustainability.
We use these terms deliberately to emphasize what we believe
is the central tension, or central experience: that the social
context (in all its dimensions) overwhelms technical choices
and decisions, and that, precisely for this reason, those
technical choices and the scope of their influence need to be
both protected and limited. In short, in our experience,
simplicity and decoupling out-weigh almost everything.

II. AGILE

The ViBRANT project was, as far as we are aware, the
first large project funded by the EU with a stated mandate to
be AGILE [6]. (We believe BioVel [7], our sister project, was
the second.) Note that the greater ViBRANT project was not
entirely about computing, but about a research community
(taxonomy and biodiversity) for whom computing plays a
significant part.

The aspect of AGILE that appealed to project proposers
and funders alike is that it encourages a flexible response to
change (in the broader research landscape relevant to the
community). The aspect that appeals to us, as systems and
service designers and developers, is that requirements and
solutions evolve through collaboration between self-
organizing components. (Note that we choose the word
‘components’ deliberately as we mean something more
inclusive and granular than ‘teams’, which might imply that
we refer only to people.)

There is a consequence to adopting an AGILE mandate at
the high levels of a large project: it creates a selection process
for fine-grained, hierarchical, modularity. Certainly the
benefits of modularity in software development, or even more
generally in any collaborative activity, were recognized long
before the AGILE manifesto, and modularity itself is not
actually mentioned. There has also been much discussion on
the failures of the AGILE program and questioning of its
suitability to all kinds of collaborative activities, especially in
large, complex and distributed projects [8]. But the manifesto
does mention simplicity (#10) and self-organizing teams
(#11). The lessons of our experience are that even the
expectation of adaptability favors modularity, and that

mailto:eil.caithness@oerc.ox.ac.uk
mailto:milo.thurston@oerc.ox.ac.uk

modularity simplifies and protects the technical decisions
made within self-organizing components.

III. DE-COUPLING

Our experience with OBOE shows that the mandate to be
adaptable confers an advantage on modularity, and introduces
certain freedoms that in an alternative world of functional
specification might be considered extra constraints.

Fig. 1 above shows a traditional architecture diagram with
three columns: Users, Middleware, and Services. At one level
the diagram serves us well: it shows the relationship between
modular, collaborating elements. The replicated array of
mongoDB data-bases could be swapped for some alternative
(given a compelling enough reason to do so [e.g. 9]) with little
consequence elsewhere. In the empty box below Scratchpads,
a new consumer of services could be “plugged-in”, using the
API published by Rails [10], and present an interface to a new
community of users previously not engaged. (The BioVel
project, mentioned before, might wish to implement this for
instance.) All the elements in the left two columns are fairly
traditional in their mode of collaboration (REST APIs in this
case).

Where this traditional diagram serves us less well, is in
making it difficult to emphasize the extreme decoupling we
have chosen for the services. Each service in the palette is an
independent and self-contained entity—independent in terms
of machine and location (any computer, anywhere in the
world) and independent in terms of operating system, software
platform, and the like. There is no recognizable API protocol
for interaction either, not REST, SOAP, WSDL, or any such
contrivance that has proved so valuable in other areas
(although we did at first experiment with several of these). In
Fig. 1, in line with the divide between Middleware and
Services, we show several icons representing shared storage:
these act as conduits in our architecture. We call the
mechanism Drop & Compute, discussed below in the next
section.

We believe that a key element for the success of OBOE
has been the alignment of our technical decoupling with a
social decoupling as well. Although the authors share office
space, swap experience, and collaborate in all the good senses
of the word, we have divided development on OBOE strictly

in line with the service decoupling and in line with our
respective expertise: M.T. has designed, implemented and
maintains everything in the Middleware column, N.C. has
designed and developed most of the services from beginning
to end (most of the services because, entirely as expected,
some have been contributed by other authors. See the Services
section below.) One of us prefers *nix based platforms and
open source software systems; one of us prefers Windows and
Matlab. These technical choices are protected by the scope of
our decoupled modularity and make absolutely no difference
to our collaboration.

IV. DROP & COMPUTE

It is useful to digress briefly into a short history of
Drop & Compute. At about the time we started making key
decisions for the design of OBOE, it turns out that the team
supporting High Throughput Computing at The University of
Manchester via their very large (1600+ core) Condor pool
were looking for a simplified way for users to access the
resource. Their first solution, invented by Ian Cottam [11, 12],
was to use shared folders on Dropbox: the user prepares a

.zip file and drops it in the appropriate folder, the resource

monitors the folder via a bash script and notices the new
arrival, starts the processing, and returns the result for the user
to pick up. In this formulation there is one Dropbox folder per
user in a single Dropbox account, and there is very little
middleware overhead, essentially just one bash script. Let’s
call this the Manchester style Drop & Compute where the
shared storage is exposed to users.

Manchester HTC soon bumped into the limitations of a
single Dropbox account with many folders and changed over
to each user having their own Dropbox account. Some users
even chose to purchase their own 50GB or 100GB accounts.

The next, and more severe problem was not technical, but
a social concern over security: users were concerned that by
using this mechanism they lost control of the confidentiality
of their research data. Dropbox uses commercial, USA-based
servers, and the US Patriot Act means that US companies must
surrender any data they hold if requested to do so by Federal
Government agencies. In response Manchester implemented
a ‘local version’ of Drop & Compute, where the user merely
has to mount a folder on the submit node on their local
computer, and continue with the same drag-&-drop approach
to submit jobs. Ian Cottam notes the loss of several desirable
features, mostly for the user experience, in adopting a local
disk mount [11].

Following Manchester’s lead, other large system operators
also began investigating Drop & Compute for user job
submission [e.g. 13].

At Oxford we were looking for a straightforward and
convenient way for a service to receive job parameters from
the middleware (not directly from the user). We had already
put in place a conventional system of wrappers for proprietary
programs, but this seemed too tightly-coupled and we were
already responding to the AGILE expectation of change. We
too started using Dropbox. In our version, it’s the OBOE
application that packs content gathered from web-forms, user

supplied files, and any other relevant information into a .zip
file and drops this into the appropriate folder, not the user. The

Figure 1. OBOE System Architecture

shared storage is not exposed to the user. For us there is one
Dropbox folder per service, not per user, and instead of a
single bash script there is an entire web-application complete
with APIs and replicated data-bases managing user accounts
and service requirements. Let’s call this the Oxford style Drop
& Compute. Fig 2. above illustrates the different ordering
between the Manchester and Oxford styles.

Just as at Manchester, and also in response to users’
concerns about confidentiality, we soon changed as well, or
rather we added an alternative to Dropbox: a hosted private
instance of SparkleShare. Users are unaffected, but services
need to accommodate the change to the shared storage by
installing a local node of SparkleShare.

Finally, for convenience, and because many of the OBOE
services run on virtual machines hosted in the OeRC, we now
also use a shared GPFS which our various systems can mount
as either NFS or CIFS. This is a rather acronymic way of
saying that we have a convenient and fast way for our local
systems to share files, and an equally convenient but perhaps
not-so-fast way for services on remote machines to share files.
Users are unaffected by any of this, and choices are made on
a per-service basis.

V. THE OBOE WEB-APPLICATION

OBOE is a Ruby on Rails application using MongoDB as
its data store. Ruby on Rails is regarded as a framework
allowing the rapid and agile development of web applications
and was chosen for this reason once the decision was made to
use a separate framework rather than building Drupal plugins
for use with Scratchpads. In this section we explain our
decision to develop a separate framework.

1) A separate application allows us to give access to a

wider audience of users than those just using Scratchpads.

2) A major function of OBOE is to provide a REST

interface for applications that do not have one; writing

Scratchpad plugins in Drupal would not have achieved this.

3) Writing a separate application with decoupled modes

of interaction protects the technical choices made and limits

their scope.

The OBOE rails application is simple, containing only one
class, the “job”. Each job represents a single analysis
requested by a user, no matter what the service or the input
data. Each job type has an associated module which defines
two methods; one starts the job running, the other checks
whether it has completed and obtains the final data. Each time
a job is started a progress check is queued (the interval varies
by job type); if a job is found to be running then another check
is queued, and so on. Successful completion or reported
failure will complete processing of the job and no further
checks will be made.

Details of the required data are defined in the job model
and may be queried via the API. The web interface presents a
form (generated from the same definitions presented by the
API) which makes clear the required information for that type
of job.

MongoDB was selected as the database as each job is
essentially an independent analysis which is either newly
created, running or finished, and there is no need for complex
queries on jobs stored in OBOE’s database. There has been
recent criticism of MongoDB [e.g. 9] as being a poor
replacement for relational databases, but OBOE is a case
where a relational database is not required. MongoDB’s
flexibility for the storing of arbitrary data is ideal for the
variety of jobs which it makes available, where the main
requirement is to pass the user’s data from the user to the
application and back as efficiently as possible.

VI. THE OBOE SERVICES

OBOE services fall squarely in the category of Software
as a Service (SaaS) where software and associated data are
centrally hosted in the cloud. Our intention has always been to
create a platform for the authors of research computing
applications to make their work more easily accessible to
users without incurring any of the overheads and
disadvantages of traditional software distribution, or requiring
knowledge of cloud computing. From the user’s perspective,
access to the latest research computing applications is made
available simply via a web-browser. Neither of the end-to-end
parties—the application user or the application author—need
care about any of the intermediate cloud technicalities.

Technically, OBOE creates a REST interface for any self-
contained batch processing application which can then be
used more widely.

VII. USAGE RATES

Usage rates of OBOE (see Fig. 3 below) have grown
remarkably consistently over the three year duration of the
project to build the system. We have not been overwhelmed
by scaling issues, nor do we find we are underexposed.

VIII. DISCUSSION AND CONCLUSIONS

In all of this discussion, we need to make it clear to users
and application developers alike that we are talking essentially
about non-interactive applications. Perhaps this is the single
most important point of misunderstanding of the OBOE
model: that perhaps batch does not meet users’ long-term
expectations of research computing applications.

Figure 2. Manchester versus Oxford Styles

Of course interactive applications are hugely important
and it would be misguided to argue otherwise, though batch
computing will not fall by the wayside just yet. Over the next
decade, as efforts to model the biosphere are taken up
seriously [14, 15, 16], we believe that parameter sweeps for
an astonishingly diverse array of biological and environmental
models will become commonplace. To meet this growing
computational requirement we believe that batch computing,
and something very like the OBOE model of service
integration, will play an increasingly important role.

ACKNOWLEDGMENT

The authors received funding from the ViBRANT project,
European Union 7th Framework Programme, Research
Infrastructures group, Contract no. RI-261532. Compute,
storage and systems support were provided, without
additional external funding, by the Oxford e-Research Centre,
University of Oxford. We thank colleagues in the OeRC and
the ViBRANT project for helpful discussions.

REFERENCES

[1] N. Caithness and M. Thurston, “The Oxford Batch Operation Engine,”
https://oboe.oerc.ox.ac.uk/, 2013.

[2] N. Caithness, et al. “WP5: Data Interaction and Services,”
http://vbrant.eu/content/wp5-data-interaction-and-services, 2013.

[3] V. S. Smith, et al. “Virtual Biodiversity Research and Access Network
for Taxonomy (ViBRANT) ,” http://vbrant.eu/, 2013.

[4] V. S. Smith, et al. “Scratchpads 2.0: a virtual research environment
infrastructure for biodiversity data,” http://scratchpads.eu, 2013.

[5] V. S. Smith, et al. “Scratchpads 2.0: a Virtual Research Environment
supporting scholarly collaboration, communication and data
publication in biodiversity science,” Zookeys, 150, 2011. Special Issue:
e-Infrastructures for data publishing in biodiversity science 53-70, doi:
10.3897/zookeys.150.2193.

[6] K. Beck, et al. “Manifesto for Agile Software Development.” Agile
Alliance, http://agilemanifesto.org/, 2001.

[7] A. Hardisty, et al. “Biodiversity Virtual e-Laboratory (BioVel),”
http://www.biovel.eu/, 2013.

[8] P. Kruchten, “Agile’s Teenage Crisis?”
http://www.infoq.com/articles/agile-teenage-crisis, 2011.

[9] S. Mei, “Why You Should Never Use MongoDB,”
http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-
use-mongodb/, 2013.

[10] M. Thurston and N. Caithness, “The Oxford Batch Operation Engine
API,” https://oboe.oerc.ox.ac.uk/docs, 2013.

[11] I. Cottam, “The Evolution of ‘DropAndCompute’,”
http://www.walkingrandomly.com/?p=3339, 2011.

[12] D. DeRoure, “Drop and Compute,”
http://blog.openwetware.org/deroure/?p=97, 2011.

[13] J. Lander, “From desktop to grid,”
http://nationalgridservice.blogspot.co.uk/2010/04/from-desktop-to-
grid.html, 2010.

[14] A. Hardisty, et al. “A decadal view of biodiversity informatics:
challenges and priorities,” BMC Ecology, 13:16, 2013.

[15] A. Hardisty, “Horizon 2020: A call to forge biodiversity links,” Nature,
502:171, 2013.

[16] D. Purves, et al. “Ecosystems: Time to model all life on Earth,” Nature,
493:295-297, 2013.

Figure 3. OBOE usage rates

https://oboe.oerc.ox.ac.uk/
http://vbrant.eu/content/wp5-data-interaction-and-services
http://vbrant.eu/
http://scratchpads.eu/
http://agilemanifesto.org/
http://www.biovel.eu/
http://www.infoq.com/articles/agile-teenage-crisis
http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/
http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/
https://oboe.oerc.ox.ac.uk/docs
http://www.walkingrandomly.com/?p=3339
http://blog.openwetware.org/deroure/?p=97
http://nationalgridservice.blogspot.co.uk/2010/04/from-desktop-to-grid.html
http://nationalgridservice.blogspot.co.uk/2010/04/from-desktop-to-grid.html

