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Crowdsourcing — What is this?

e Means to distribute work requiring human p ut .
e ... to alarge user commu ty ft vath
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Crowdsourcing - Examples

e Real-world examples:
— ReCAPTCHA: Double-keying words from images
— Distributed Proofreaders: Proofreading OCR results
— Search for Ken Fosset: Satellite image processing

e Scientific studies:
— OntoGame: Ontology construction
— GalaxyZoo: Classification of galaxies
— Word sense disambiguation & other NLP tasks
— Image labeling & classification



Crowdsourcing - Discussion

e Advantages
— Less expensive than hiring full-time personnel
— Faster data processing due to large workforce

e Challenges:
— Contributing users not trained ...
— ... hard to supervise ...
— ... and possible dishonest

=» Requires specific means to ensure result quality
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Decisions and Tasks

e Decision D: single parameter to obtain
— Choosing appropriate option O from available options Opts(D)
— Examples: Galaxy class, image label, transcript of word image
=> Variation in complexity

e Task T = (D4, ..., Dy): list of decisions
— Unit of work assigned to users
— Decisions can be independent or connected
— Examples: Structuring page image into blocks



States of Decisions & Tasks

e State of decision D: Option selected for D at some point

— Original state: Option selected for D when entering system
(may be pre-selected by Al algorithm or empty)

— Input state of user U: Option user U selected for D
— Result state: Actual state for D when leaving system

— Correct state: Correct result for D when leaving system
(what experts would agree on)

e Correspondingly for task T = (D, ..., Dy):
— List of respective state of decisions D, ..., Dy
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Errors

e Two types of errors:

— Miss Errors: User makes or fails to correct an error
(can always happen)

— Add Errors: User falsifies correct decision
(can only happen with algorithmic pre-decisions)

e Sources of errors:

— Mistakes: Resulting from sloppiness or misjudgment
(both miss and add errors)

— Cheating: User does not bother to check thoughtfully, accepting
everything as correct (generally miss errors)

— Others (e.g. destructive malevolence): User falsifies on purpose
(more theoretical, same properties as mistakes)
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SotA: r-Redundancy

e Principle:
— Gather input from r users
— Result: Most frequently selected option

e Against all sorts of errors
e Value of r mostly ballpark figure so far, around 5 to 15

e Problem: sub-optimal throughput of tasks
e Studies so far mostly focused on user behavior
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SotA: reCAPTCHA

e Principle:
— Test user with decision C system knows correct result for
— Consider actual input only if input for C correct

e Mainly against cheating

e Problem: deviates working time from decisions to process
e Problem: only works with small tasks
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v-Voting - ldea

e Observation: r-Redundancy gathers inputs after result is clear

e ldea for increasing throughput:
— Stop gathering input as soon as result emerges

e Maintains expected result accuracy of r-Redundancy ...
e ... while increasing throughput
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v-Voting - Mechanism

e Principle: Incremental majority vote
— Gather input from users until v users agree
— Result: The agreed-upon option

e Possible: weighting of votes depending on user ...
e ... but not investigated here
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Vote Boosting - Idea

e Observation: not all users make errors with same probability

e |dea for increasing throughput:
— Measure error rate of users in v-Voting
— Increate weight of input from users who make few errors

e Circumvents error prevention of v-Voting ...

e ... but increases throughput significantly
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Vote Boosting - Mechanism

e Principle: If user U is first to make input on some task T
— Take his input for correct with some boost probability ...
— ... depending on how many errors U made in the past
— Otherwise, fall back to v-Voting mechanism

e Multiple definitions of boost probability possible
e Here: based on statistical test (next slide)
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Boost Probability

Two parameters:
— C: minimum probability of correct result
— m: maximum probability of undeserved vote boost

To compute / estimate: P(‘'user U makes no error')

Observable: number of correct inputs from
user U since last error 2> H(U)

Boostability Hypothesis: "P(‘'user U makes no error’) > C"

Approach: significance of accepting boostability hypothesis for
user U based on H(U) observed correct inputs - s

Boost probability BP(U) := m/s
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Simulation Setup

e Users: 9 populations of 1,000 each, different combinations of
— Mean probability of making mistakes (1%, 4%, 15%)
— Mean probability of cheating (1%, 4%, 15%)

e Tasks: 9 lists of 1,000,000 each, different combinations of
— Options per decision (2, 3, 4)
— Mean probability of correct initial states (80%, 90%, 95%)

e 46 methods of combining user inputs into results
— 1-Redundancy (Base Case without any error prevention)
— r-Redundancy with r=3,5,7
— v-Voting with v=2,3,4 ...
— ... each v with 14 parameter combinations for Vote Boosting



r-Redundancy vs. v-Voting

Base 2- 3- 4-
case | Red Voting 5-Red. Voting 7-Red. Voting
Remaining 4.25 1.11 1.01 0.48 0.46 0.27 0.27
Error (in %)
Inputs per Task 1 3 2.36 5 3.57 7 4.75

e Aggregated over all user populations and task lists

= v-Voting requires fewer user inputs per task
=>» v-Voting leaves fewer errors

= Increase in both throughput and result accuracy




Cost of 99.5% Result Accuracy

Mean Prob. of Mistakes
Cheating 1% 4% 15%0
194 1.14 (99.51%) 1.78 (99.63%) 3.78 (99.55%)
° v=2 m=8% C=92% V=2 m=4% C=96% v=3 m= 2% C=98%
"y 1.42 (99.57%) 1.93 (99.51%) 4.48 (99.51%)
° v=2 m=4% C=96% v=2 m=4% C=96% v=4 m=4% C=96%
1504 3.94 (99.65%) 4.6 (99.61%) not achieved
° v=4 m=2% C=98% v=4 m=2% C=98% 5.38 (98.62%) v=4 m=0

Inputs per task (accuracy actually achieved)
v controls v-Voting, m and C control Vote Boosting

= Cost of data quality strongly dependent on users

= Cheating prevention compulsory

= Strategy:
— Start with conservative parameters
— Periodically assess result quality and adjust parameters
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Summary

e Formal model of crowdsourcing systems
— Tasks
— Errors
— System layout

e Better input aggregation improves results and throughput
— v-Voting

— Vote Boosting

e Cheating prevention compulsory for data quality



Outlook

e Vote Boosting: alternative definitions of boost probability

e Cheating prevention mechanisms

« Verify simulation results in real-world deployment
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